ACCELERATOR DIVISION DEPARTMENT PROCEDURE

IOTA/FAST DEPARTMENT

ADDP-FF-0003

FAST CONTROL ROOM ON-THE-JOB TRAINING (OJT)

RESPONSIBLE D	EPARTMENT:	IOTA/FAST Departmen	nt	
PREPARED BY: (Dean	R Edstrom, Jr	DATE:	9/12/17
REVIEWED BY:	James Der	ren J Crawford	DATE:	9/13/17
APPROVED BY:	Alex	ander Valishev	DATE:	9/13/17
REV	rision no. <u>1</u>	REVISION ISSUE DATE:	9/12/2017	

Revision History

1) 9/12/2017 - Existing OJT updated to include 300 MeV operation and put into ADDP format.

Table of Contents

1.0 PURPOSE AND SCOPE
2.0 AUTHORIZED PERSONNEL
3.0 ON-THE-JOB TRAINING (OJT)
3.1 OPERATING REQUIREMENTS
3.2.1 TURN-ON - 50 MEV ELECTRON BEAMLINE
3.2.2 TURN-ON - 300 MEV ELECTRON BEAMLINE
3.2.3 TURN-OFF - ELECTRON BEAMLINE
3.3 Systems 2 3.3.1 Instrument air 2
3.3.2 Machine Protection System (MPS)
3.3.3 Low-Conductivity Water (LCW)
3.3.4 CRYOGENICS
3.4 Manipulating Devices
3.5 Controlled Access
4.0 DISTRIBUTION

1.0 PURPOSE AND SCOPE

The following checklist is provided to ensure basic operations training for Fermilab employees outside of the FAST operations group to facilitate running of the Accelerator Division Research & Development Accelerator (ADRDA) chain.

2.0 AUTHORIZED PERSONNEL

This training shall be administered by FAST Operations Group (see section 3.6) with each intended operator. Upon record of completion, the Fermilab employee being trained becomes a qualified operator, though the operations schedule remains at the sole discretion of the FAST Operations Group.

A list of qualified operators shall be maintained by the IOTA/FAST Department Head and qualifications shall be cleared in the event of major changes to the configuration of the ADRDA or at the discretion of the IOTA/FAST Department Head.

3.0 ON-THE-JOB TRAINING (OJT)

3.1	Operating requirements Read the FAST Facility Beam Permit and sign/ID #/date the back of the page.
	Read the FAST Facility Run Condition and sign/ID #/date the back of the page.
	Rad Worker training completed.
3.2	Sequencer (N43)
3.2.1	Turn-On - 50 MeV Electron Beamline Turn on the FAST 50 MeV beamline from N43 and understand each step:
	Clock-in - Starts the run clock
	UV Laser-on - Checks seed laser, turns on IR
	amplifiers, establishes UV
	Beam switch is controlled by the Main Control Room $(x3721)$
	Hysteresis clears for all major magnet groups - Trim, Quad, Bend
	RF Gun HLRF turn-on / ramp
	Dark current monitored on ramp
	RF Gun phase scan - Performed at nominal gradient
	CC1 HLRF turn-on and ramp
	CC2 HLRF turn-on and ramp

	RF phase scans - Know what they should look like
	CC1
	CC2
	Verify beam to the 50 MeV absorber (LEA)
	Make a logbook entry with summary displays as directed
3.2.2	Turn-On - 300 MeV Electron Beamline Turn on the FAST 300 MeV beamline from N43 and understand each step:
	Cryomodule turn-on and ramp
	Cryomodule phase adjustments
	Hysteresis clears for all major magnet groups - Trim, Quad, Bend
	Verify beam to the 300 MeV absorber (HEA)
	Make a logbook entry with summary displays as directed
3.2.3	Turn-Off - Electron Beamline Turn off the FAST electron beamline from N43 and understand each step:
	To be run in entirety if any part of the electron beamline has been turned on
	Laser system
	RF Gun HLRF system
	CC1 HLRF system
	CC2 HLRF system
	Cryomodule
	All major magnet groups - Trim, Quad, Bend
	Verify that all systems have been turned off
	Make a logbook entry with shift plot (toroid summary from clock-in)
3.3	Systems
3.3.1	Instrument air Know that the transverse profile monitors, vacuum valves, and cryogenics system valves use compressed dry air, ACNET readback N:1PTAIR.

3.3.2	Machine Protection System (MPS) Know that multiple systems are monitored.
	Moveable devices
	RF Gun water
	Beamline vacuum system
	50 MeV chicane dipole currents
	300 MeV dogleg dipole currents
	Beam switches - $3x$ in NML control room (x6450), $1x$ in MCR (x3721)
	50 MeV beam dump water system and temperature
	50 MeV spectrometer magnet (N:D122) NMR lock is monitored
	300 MeV beam dump water system and temperature
	300 MeV spectrometer magnet (N:D600) NMR lock is monitored
	Beamline loss monitors
	Experimental devices may interface with the MPS.
	If the MPS permit trips, contact a FAST operations expert. (See call-in list)
3.3.3	Low-Conductivity Water (LCW) LCW is distributed from the northwest corner of NML
	A single pump is used at a time (Pump #1 or Pump #2)
	The pumps are controlled by PLC Touch Panel
	The electron gun skid taps from the main LCW distribution
3.3.4	Cryogenics Each SRF system (e.g. CC2) has a cryogenic permit
	A quench in one SRF cavity may impact others
3.4	Manipulating Devices Magnets
	50 MeV Bend Dipoles
	50 MeV Corrector trims
	50 MeV Quadrupoles
	300 MeV Bend Dipoles
	300 MeV Corrector trims
	300 MeV Quadrupoles
	Instrumentation (Movable Devices)

			Faraday Cup			
			Cathode camera sys	stem		
			Transverse Profile	e Moni	tors (TPMs)	
		RF ac	celeration phases			
		Strea	k cameras			
		Conta	ct an Operations Ex	kpert 1	before manipulating:	
			Vacuum/Gate Valves	5		
			Bunch number			
			Waveplate			
			RF magnitudes			
3.5			Access y training requirer	ments		
			Rad Worker II			
			Oxygen Deficiency	Hazar	d (ODH)	
		Contr	olled Access is to	be ap	proved by an Operations E	xpert
		Run t	he Turn-off sequenc	cer ag	gregate (N43).	
		Check acces		all s	hift plots since the last	
			If any toroid shown Operations Expert		ater than 5 W consult an	
3.6	Call-i	_	t perations Group (Ex	xperts)	
			Dan Broemmelsiek	(630)	746-4587	
			Jinhao Ruan	(630)	536-9028	
			Chip Edstrom	(630)	338-3708	
			Darren Crawford	(630)	882-8990	
			Jamie Santucci	(630)	910-1998	

4.0 DISTRIBUTION

An electronic copy of this procedure shall be made available through the FAST Web Page ($\underline{\text{http://fast.fnal.gov/}}$) and a signed hard copy shall be maintained in the NML Control Room.